サゴヤシ生育地の土壌
——窒素の挙動に関わる土壌要因——

角田憲一1・安藤 豊1・吉田徹志2・山本由徳3・新田洋司1・
江原 宏4・後藤雄佐3・ペニト H. ブルワント1

1 山形大学農学部 〒997-8555 鶴岡市若葉町
2 高知大学農学部 〒783-8502 南国市物部
3 茨城大学農学部 〒300-0393 勝鬨郡阿見町
4 三重大学生物資源学部 〒514-8507 津市上浜町
5 東北大学農学部 〒981-8555 仙台市青葉区

要約 サゴヤシの窒素に関する栽培管理の基礎的なデータを得る目的で、現地の土壌断面調査を行い、土壌の化学的性質及び土壌窒素無機化量について検討を行った。インドネシア国ソラワク州ムカ、マレーシア国ジョホール州パッパハト、タイ国サラチュットの土壌断面調査、土壌の化学的性質及び土壌窒素無機化量について調査した。ティビンティギ、ムカ及びパッパハトには泥炭土壌及び硫質土壌が存在した。サラチュットには硫質土壌が分布していた。泥炭土壌の pH は 4 以下を示し、硫質土壌よりも低い pH を示した。泥炭帯の地下水においてアノニア態窒素は 0.1–0.5 mgL⁻¹ であり、サゴヤシの生産に影響を与えるものと予想された。陽イオン交換容量（CEC）は、硫質土壌 < 泥炭土壌であった。一方、CEC pH4/CEC pH7 は硫質土壌で 0.9 以上を示す土壌が多々存在したが、泥炭土壌では 0.7–0.9 を示す土壌が存在していた。したがって、泥炭土壌の窒素吸着強度は硫質土壌に比べて弱いことが予想された。泥炭土壌の窒素無機化量は硫質土壌のものに比べて高い水準にあった。易分解性窒素比は泥炭土壌で 3.5 mg kg⁻¹ 以上、硫質土壌では 0.9 mg kg⁻¹ 以下であった。泥炭土壌の無機化量定数 A と窒素土壌を比べて高い傾向にあった。活性化エネルギーは泥炭土壌と硫質土壌には差が認められなかった。ムカとティビンティギ両地域における泥炭土壌の容積重は 0.15-0.20 g cm⁻³、硫質土壌では 0.90-1.10 g cm⁻³ であった。容積当たり窒素無機化量は硫質土壌よりも泥炭土壌で低下することが示された。また、容積当たりの CEC では、泥炭土壌は硫質土壌よりも低いものと予想された。本試験の結果より、泥炭土壌と硫質土壌に生産するサゴヤシの生育差は、土壌の窒素栄養からある程度説明できるものと推察された。

キーワード アノニア態窒素、CEC、窒素無機化量、泥炭土壌、pH

Soil Characteristics in Sago Palm Grown Area.
Factors Associated with Fate of Inorganic Nitrogen in Soil.

Ken-ichi Kakuda1, Ho Ando1, Tetsushi Yoshida2, Yoshinori Yamamoto3, Youji Nitta4, Hiroshi Ehara4, Yusuke Goto4 and Benito Heru Purwanto1.

1 Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
2 Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
3 Faculty of Agriculture, Ibaragi University, Inashiki 783-8502, Japan
4 Science for Agricultural Production, Mie University, Tsu 514-8507, Japan
5 Faculty of Agriculture, Tohoku University, Sendai 981-8555, Japan
はじめに

サゴヤシの生育環境は気温若しくは水温で広域にわたる（下田・パワ 1990）。またサゴヤシは、泥炭土壌、
林質土壌に生育し、地下水位が高いところから低いたところまで幅広く分布している。しかし異なる土壌環境の多く
ではサゴヤシの生育速度が異なり、泥炭層が厚い土壌でサゴヤシの生育は遅くなることが知られている（佐藤ら
1979、山崎歩リ childcare 1997）。

泥炭土壌と林質土壌に生育するサゴヤシでは、一樹当たりのデンプン生産量に差が認められない（Sim and
Ahmed 1997、高橋 1983）。しかし、サゴヤシの生育速度が遅くなると年間デンプン生産量は低くなる。土壌環境
がサゴヤシの生育に与える影響は、土壌の理化学性、地下水位の高低、流水の影響などの総合的な結果と考えら
れる。

窒素は植物の生育に最も大きな影響を与える要因である。窒素施肥は作物の収穫量を増加させるための有効な
手段である。サゴヤシ栽培においても、窒素施肥による単位面積当たりデンプン生産量の増加及び生育期間の短
縮が期待される。しかし、これまでに行われたサゴヤシへの施肥試験では、サゴヤシの生育に対する窒素施肥の
影響は認められなかった（Kueh 1995）。サゴヤシに対する施肥試験例は少なく、栽培法確立のためにさらなる知
見の蓄積が必要と考えられる。

サゴヤシの窒素施肥法を確立するためには、サゴヤ
シの窒素要求量及び土壌からの窒素供給量を把握する必要がある。これまでに、サゴヤシの窒素、リン、カリウ
ム、カルシウム、マグネシウム要求量が調査されている（Flach and Schuiling 1991）。しかし、サゴヤシ生育土壌
からの窒素供給量について調査されたものはみられない。

サゴヤシ生育土壌の窒素無機化量についての検討は、サ
ゴヤシへの窒素施肥方法の確立のために重要である。

サゴヤシが多く栽培されている泥炭土壌地域は低湿地
に存在するため地下水位が高く、特に雨季には満水状態
となる（山本 1996）。したがって、土壌中に存在する無機
窒素源はほとんどがアンモニア態の形で存在すると考えら
れる。施肥窒素及び土壌から無機化された窒素がサゴ
ヤシに有効に利用されるためには、アンモニア態窒素が
土壌中に長く存在する必要がある。土壌の陽イオン交換
容量（CEC）はアンモニア態窒素保持に関わる重要な要
因である。土壌の CEC を把握することにより、施肥し
た窒素が土壌中に長く存在することができるかどうかを
判断できると考えられる。

報告では、サゴヤシの窒素に関する栽培管理の基礎
的なデータを得る目的で、現地における土壌の断面の調
査を行うとともに、土壌の化学的性質及び土壌窒素無機
化量について検討を行った。
材料及び方法

1997年4月にインドネシア国リアワ州テビンテニギ（Riau, Tebingtinggi）で土壌の断面調査を実施した。1997年8月にマレー
シア国ジョホール州バッパハット（Johor, Batu Pahat, バッパハット土壌，土壌名 BATU）、タイ国ナラチャワト（Narathiwat, ナラチャワト土壌，土壌名 NARA）周辺土
壌の断面調査を実施した。

土壌断面調査時に地下水と土壌試料を採取し分析に供した。地下水のpHは携帯型pH計で直ちに測定した。
地下水のアンモニア態窒素濃度はインドフェーリオールグループで比色定量した。また、1999年12月にマレーシ
シア国サラワク州ムカ（Sarawak, Mukah, ムカ土壌）の
17土壌（土壌層位各3層，計51点）インドネシア国リア
ワ州テビンテニギの7土壌（土壌層位各3層，計
23点）に中視重視測定のために100mのコアサンプラー
を用いて採取した。

テビンテニギ土壌，バッパハット土壌及びナラチャワト土壌について風乾重量（2mm以下）を調整し，一般理化
学的性質の分析に供した。pHは土壌：水＝1:2.5の浸透液
で測定した。電導電流は0.1M酢酸アンモニウム
溶液（pH7及びpH4）で洗浄後，80%アルコール（pH9
及びpH4）を添加し，振とう後に過充分に遠過ご熱
アンモニウム塩を除去し，1M塩類カリウム溶液で抽出した。

ホスホリン含有量は試料を土壌：水＝1:2.5の浸透液
で抽出した。抽出液は1M酢酸アンモニウム溶液で洗浄
後，抽出液をICPで定量した。

土壌栄養無機化量測定のために，1998年8月にテビン
テニギ土壌（土壌名 T'T」）及びムカ土壌（土壌名 MK）
を採取した。生土10gをガラス製試験管（直径24mm，高さ
100mm）を入れ，脱水塩水を加えた後に密栓し，20°C，
25°C及び30°Cで16週間湿潤養分培養した。測水後1,2,
4,8及び16週後に1M塩類カリウム溶液で無機栄養素
を抽出し，水蒸気蒸留法により無機アンモニア態窒素を測定
した。得られた結果は速度論的方法により解析を行った
（杉原ら1986，安藤・庄子1986）無機化比率メーター
は以下に示す単純型モデルにてはてして計算を行った。

\[N = N_0 \left(1 - \exp \left(-k \times t\right)\right) + B \] \hspace{1cm} (1)

\[i = i_0 \times \exp \left(E_c \left(T_c - T\right) / R \times T \times T\right) \] \hspace{1cm} (2)

\[T_c = \text{基準温度} 25°C, T_c; \text{培養時の温度} 25°C, \] \hspace{1cm} \[i_0; \text{実験条件での培養期間 \} E_c, i, \text{みかけ} \] \hspace{1cm} \[\text{の活性化エネルギー cal mol}^{-1}, R, \text{気体定数 cal day}^{-1} \] \hspace{1cm} \[\text{mol}^{-1} \] \hspace{1cm} \[i_0 \] \hspace{1cm} \[25°C \text{変換日数} \text{day}, B, \text{定数} \text{Nmg kg}^{-1} \] \hspace{1cm} \[\text{変換} 25°C \text{変換日数} \text{はアルカニックスの式を用いて求めた。}

結果と考察

1. 土壌断面

調査地点は海から14kmに位置し，施設施設がなかった（BATU-1, Table 1）地下水位は40-50cm程度と推定
された。土壌表死から20cm以下に至る部分では重粘質の土壌で
栄養分の移動が少なかった。同地区には泥炭土壌（BATU-2
1（0-10cm）、BATU-2（10-20cm））も認められたが断
面調査は行わなかった。

2. 土壌化

地質学的土壌（NARA-1, Table 1）はやや土壌が確認していた。この付近のソツ属は自生地
であった。地下水位は低く（2m以下）土壌は粘質であっ
た。

インドネシア国リアワ州テビンテニギ

海水浸透すると思われる施設用土壌（M土壌），1メート
ル以上泥炭層が続く深い泥炭土壌（D土壌）及び1メート
ル以下に粘質土壌がある泥炭土壌（S土壌）の3種類
の土壌が認められた（Table 1）。土壌断面図ではリッ
ターと泥炭土壌を区分できなかったため，表層からの
深い部分を示した。地下水はいずれの断面でも5から20cm
とごく浅い位置から出現した。土壌の種類によらず，
土壌内部は植物遺体で埋められていた。地下水のpHは
3.5から4.0の範囲であった。

2. 土壌の化学性

土壌の化学性は土壌タイプごとに示した（Table 2）。}

土壌pHは，粘質土壌（M土壌）で4.9-5.7，泥炭土壌
（M土壌）で5.0-5.7，泥炭土壌（M土壌）で5.0-5.7
（1メートル以上泥炭層が続く深い泥炭土壌（D土壌）
及び1メートル以下に粘質土壌がある泥炭土壌（S土壌））
で3.4-4.4であった。

全窒素量は，M土壌で0.7-12.5 kg m^{-2}，D土壌及びSP
土壌で10-19.9 kg m^{-2}であった。土壌とSP土壌で高い
値を示した。これは，同土壌における有機物量の差に
よるものと考えられた。

交換性カルシウム量は，M土壌<SP土壌<DP
土壌であった。交換性マグネシウム量は，M土壌<DP
土壌であった。
<table>
<thead>
<tr>
<th>Soil code</th>
<th>Soil layer</th>
<th>Depth of soil collection</th>
<th>Sample name</th>
<th>Soil texture</th>
<th>Organic matter</th>
<th>Soil color</th>
<th>pH of groundwater</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATU-1</td>
<td>0-20 cm</td>
<td>0-10 cm</td>
<td>BATU-1-1</td>
<td>CL</td>
<td>High</td>
<td>7.5YR3/4 dark brown</td>
<td>groundwater level: <0-50 cm</td>
<td>many fine roots: 0-30 cm no roots: 30 cm<</td>
</tr>
<tr>
<td></td>
<td>10 cm-</td>
<td>20-32 cm</td>
<td>BATU-1-2</td>
<td></td>
<td>Medium</td>
<td>7.5YR4/6 brown brownish gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 cm-</td>
<td></td>
<td></td>
<td>CL</td>
<td>Medium</td>
<td>10YR4/1 brownish gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NARA-1</td>
<td>0-9 cm</td>
<td>0-9 cm</td>
<td>NARA-1-1</td>
<td>CL</td>
<td>Medium</td>
<td>10YR5/4 dull yellowish brown</td>
<td>groundwater level: 2 m<</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-19 cm</td>
<td>9-19 cm</td>
<td>NARA-1-2</td>
<td>M-1-2</td>
<td>High</td>
<td>7.5YR3/2 brownish black</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19-31 cm</td>
<td>19-31 cm</td>
<td>NARA-1-3</td>
<td>M-1-3</td>
<td>Low</td>
<td>10YR6/3 dark yellowish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 cm-</td>
<td></td>
<td></td>
<td>M-1-4</td>
<td>High</td>
<td>5Y6/3 olive yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-1</td>
<td>0-16 cm</td>
<td>0-8 cm</td>
<td>M-1-1</td>
<td>High</td>
<td>Low</td>
<td>2.5YR2/1 reddish black</td>
<td>3.7 groundwater level: 5 cm many roots: 0-16 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-16 cm</td>
<td>16 cm-</td>
<td>M-1-2</td>
<td>High</td>
<td>Low</td>
<td>5Y6/3 olive yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-1-3</td>
<td>16 cm-</td>
<td>M-1-3</td>
<td>High</td>
<td>Low</td>
<td>5Y6/3 olive yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-2</td>
<td>0-15 cm</td>
<td>0-7 cm</td>
<td>M-2-1</td>
<td>LiC</td>
<td>Medium</td>
<td>7.5YR3/2 brownish black</td>
<td>3.8 groundwater level: 20 cm many roots: 0-15 cm</td>
<td>15 cm<</td>
</tr>
<tr>
<td></td>
<td>7-15 cm</td>
<td>15-25 cm</td>
<td>M-2-2</td>
<td>High</td>
<td>Medium</td>
<td>2.5YR5/3 dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-25 cm</td>
<td>25 cm-</td>
<td>M-2-4</td>
<td>High</td>
<td>Medium</td>
<td>2.5YR5/3 dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-3</td>
<td>0-10 cm</td>
<td>0-10 cm</td>
<td>M-3-1</td>
<td>LiC</td>
<td>High</td>
<td>7.5YR3/2 brownish black</td>
<td>4.0 groundwater level: 10 cm many roots: 10-20 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-25 cm</td>
<td>25 cm-</td>
<td>M-3-2</td>
<td>High</td>
<td>Low</td>
<td>5Y5/3 olive gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 cm-</td>
<td></td>
<td>M-3-3</td>
<td>High</td>
<td>Low</td>
<td>5Y5/3 olive gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-4</td>
<td>0-10 cm</td>
<td>0-10 cm</td>
<td>D-4-1</td>
<td>Litter</td>
<td>Medium</td>
<td>2.5YR2/2 very dark reddish brown</td>
<td>3.9 groundwater level: 10 cm many roots: 10 cm <</td>
<td>litter: 0-10 cm</td>
</tr>
<tr>
<td></td>
<td>10 cm-</td>
<td>10 cm-</td>
<td>D-4-2</td>
<td>Peat</td>
<td>Medium</td>
<td>2.5YR2/2 very dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-5</td>
<td>0-10 cm</td>
<td>0-10 cm</td>
<td>D-5-1</td>
<td>Litter</td>
<td>Medium</td>
<td>2.5YR3/2 dark reddish brown</td>
<td>3.6 groundwater level: 15 cm many roots: 15 cm <</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 cm-</td>
<td>10 cm-</td>
<td>D-5-2</td>
<td>Peat</td>
<td>Medium</td>
<td>2.5YR3/2 dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-6</td>
<td>0-15 cm</td>
<td>0-15 cm</td>
<td>D-6-1</td>
<td>Litter</td>
<td>Medium</td>
<td>2.5Y3/2 brownish black</td>
<td>3.6 groundwater level: 15 cm many roots: 15 cm <</td>
<td>litter: 0-10 cm</td>
</tr>
<tr>
<td></td>
<td>15 cm-</td>
<td>15 cm-</td>
<td>D-6-2</td>
<td>Peat</td>
<td>Medium</td>
<td>2.5Y3/2 brownish black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-7</td>
<td>0-10 cm</td>
<td>0-10 cm</td>
<td>S-7-1</td>
<td>Litter</td>
<td>Medium</td>
<td>2.5YR2/2 very dark reddish brown</td>
<td>3.5 groundwater level: 10 cm litter: 0-8 cm</td>
<td>mineral soil: 60 cm <</td>
</tr>
<tr>
<td></td>
<td>10-24 cm</td>
<td>10-24 cm</td>
<td>S-7-2</td>
<td>Peat</td>
<td>Medium</td>
<td>2.5YR2/2 very dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-60 cm</td>
<td>24-60 cm</td>
<td>S-7-3</td>
<td>Peat</td>
<td>Medium</td>
<td>2.5YR3/2 dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 cm-</td>
<td>60 cm-</td>
<td>S-7-4</td>
<td>Low</td>
<td>Medium</td>
<td>2.5YR2/2 dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8</td>
<td>0-10 cm</td>
<td>0-10 cm</td>
<td>S-8-1</td>
<td>Litter</td>
<td>Medium</td>
<td>2.5YR3/2 dark reddish brown</td>
<td>3.8 groundwater level: 10 cm litter: 0-5 cm coarse roots: 20 cm <</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-100 cm</td>
<td>10-100 cm</td>
<td>S-8-2</td>
<td>Peat</td>
<td>Low</td>
<td>10YR2/3 brownish black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-9</td>
<td>0-10 cm</td>
<td>0-10 cm</td>
<td>S-9-1</td>
<td>Litter</td>
<td>Medium</td>
<td>2.5YR2/2 very dark reddish brown</td>
<td>3.5 groundwater level: 10 cm many roots: 10 cm <</td>
<td>litter: 0-7 cm</td>
</tr>
<tr>
<td></td>
<td>10-100 cm</td>
<td>10-100 cm</td>
<td>S-9-2</td>
<td>Peat</td>
<td>Medium</td>
<td>5YR3/2 dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 cm-</td>
<td></td>
<td>S-9-3</td>
<td>Low</td>
<td>Medium</td>
<td>2.5YR2/2 dark reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壤类型</td>
<td>土壤名</td>
<td>pH</td>
<td>氮</td>
<td>CEC</td>
<td>交换性カチオン</td>
<td>基質饱和度%</td>
<td>地下水硝酸態窒素濃度mg l⁻¹</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>矿物質土壌 (MI)</td>
<td>M-1-1</td>
<td>4.0</td>
<td>12.5</td>
<td>58.8</td>
<td>56.2</td>
<td>8.0</td>
<td>7.1</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>M-1-2</td>
<td>4.2</td>
<td>12.0</td>
<td>56.5</td>
<td>53.8</td>
<td>5.9</td>
<td>6.6</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>M-2-1</td>
<td>4.0</td>
<td>7.1</td>
<td>33.3</td>
<td>28.9</td>
<td>6.2</td>
<td>5.2</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>M-2-2</td>
<td>4.1</td>
<td>3.2</td>
<td>20.7</td>
<td>14.3</td>
<td>4.5</td>
<td>3.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>M-3-1</td>
<td>4.1</td>
<td>12.1</td>
<td>58.5</td>
<td>53.6</td>
<td>6.4</td>
<td>6.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>M-3-2</td>
<td>4.1</td>
<td>6.9</td>
<td>30.1</td>
<td>36.1</td>
<td>7.9</td>
<td>6.3</td>
<td>2.6</td>
</tr>
<tr>
<td>BATU-1-1</td>
<td>4.4</td>
<td>4.4</td>
<td>32.2</td>
<td>31.5</td>
<td>2.7</td>
<td>3.3</td>
<td>1.9</td>
<td>0.1</td>
</tr>
<tr>
<td>BATU-1-2</td>
<td>4.7</td>
<td>3.7</td>
<td>34.2</td>
<td>36.0</td>
<td>3.6</td>
<td>6.6</td>
<td>3.2</td>
<td>1.0</td>
</tr>
<tr>
<td>NARA-1-1</td>
<td>5.7</td>
<td>1.3</td>
<td>4.5</td>
<td>8.7</td>
<td>1.9</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>NARA-1-2</td>
<td>5.6</td>
<td>0.7</td>
<td>9.2</td>
<td>6.3</td>
<td>2.1</td>
<td>0.8</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>MK-1</td>
<td>5.3</td>
<td>3.5</td>
<td>19.9</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>TT-1</td>
<td>4.0</td>
<td>3.5</td>
<td>22.4</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>浅骨格土壌 (SP)</td>
<td>S-7-1</td>
<td>3.7</td>
<td>15.6</td>
<td>84.1</td>
<td>65.3</td>
<td>8.1</td>
<td>11.3</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>S-7-2</td>
<td>3.5</td>
<td>12.9</td>
<td>108.1</td>
<td>96.9</td>
<td>12.7</td>
<td>15.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>S-8-1</td>
<td>3.9</td>
<td>16.1</td>
<td>100.0</td>
<td>74.5</td>
<td>11.0</td>
<td>12.6</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>S-8-2</td>
<td>3.9</td>
<td>14.9</td>
<td>99.8</td>
<td>73.1</td>
<td>10.2</td>
<td>11.3</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>S-9-1</td>
<td>3.7</td>
<td>19.1</td>
<td>95.8</td>
<td>82.0</td>
<td>9.9</td>
<td>11.2</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>S-9-2</td>
<td>3.6</td>
<td>14.4</td>
<td>95.6</td>
<td>76.8</td>
<td>11.3</td>
<td>11.6</td>
<td>9.6</td>
</tr>
<tr>
<td>MK-2</td>
<td>4.4</td>
<td>13.8</td>
<td>91.4</td>
<td>35.3</td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>深骨格土壌 (DP)</td>
<td>D-4-1</td>
<td>3.5</td>
<td>19.0</td>
<td>104.6</td>
<td>88.1</td>
<td>13.1</td>
<td>15.8</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>D-4-2</td>
<td>3.6</td>
<td>16.4</td>
<td>96.4</td>
<td>87.6</td>
<td>11.4</td>
<td>13.1</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>D-5-1</td>
<td>3.7</td>
<td>18.6</td>
<td>109.3</td>
<td>114.0</td>
<td>24.0</td>
<td>22.4</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>D-5-2</td>
<td>3.5</td>
<td>17.0</td>
<td>96.7</td>
<td>82.7</td>
<td>16.7</td>
<td>13.4</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>D-6-1</td>
<td>3.5</td>
<td>19.9</td>
<td>104.3</td>
<td>84.8</td>
<td>15.2</td>
<td>16.0</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>D-6-2</td>
<td>3.4</td>
<td>15.6</td>
<td>107.0</td>
<td>89.2</td>
<td>12.1</td>
<td>13.7</td>
<td>5.8</td>
</tr>
<tr>
<td>BATU-2-1</td>
<td>3.5</td>
<td>14.9</td>
<td>107.2</td>
<td>92.7</td>
<td>21.4</td>
<td>20.6</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>BATU-2-2</td>
<td>3.5</td>
<td>12.8</td>
<td>106.3</td>
<td>95.2</td>
<td>18.7</td>
<td>12.3</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>TT-2</td>
<td>4.3</td>
<td>17.2</td>
<td>82.0</td>
<td>60.4</td>
<td></td>
<td></td>
<td></td>
<td>0.26</td>
</tr>
</tbody>
</table>

SP 土壌 = DP 土壌であった。一方、酸塩化物土壌は土壌タイプごとに差が認められなかった。テビンキ土壌採取地点はハッパハッパ土壌採取地点に比較して海岸近くに近いことから、酸塩化物土壌性程度は土壌タイプよりも立地条件に大きく支配されたものと考えられた（Funakawa et al. 1996）。酸塩化物土壌含量は、MI 土壌 = SP 土壌 < DP 土壌であった。DP 土壌の酸塩化物土壌含量が他の土壌より高い原因として、植物体中のカリウムが容易に抽出されることが関連していると考えられた。しかし、SP 土壌のカリウム含量が低い原因は不明である。

地下水のアンモニア態窒素濃度では、土壌タイプごとに差は認められなかった。地下水のアンモニア態窒素濃度は、0.1～0.5 mg L⁻¹ であったため、1 m³ の水から 100～500 mg の窒素をサゴヤシに供給することが可能となる。地下水中のアンモニア態窒素はサゴヤシの生育に影響を与えるものと予想された。

(3) 電子交換容量

有機質土壌は変異帯電を示すと考えられるため、pH4 及び pH7 で陰イオン交換容量（CEC pH4, CEC pH7）を検討した。CEC pH4 及び CEC pH7 とも、MI 土壌 < SP 土壌 = DP 土壌であった（Table 3）。

MI 土壌では、CEC pH4/CEC pH7 が 0.9 以上である土壌が大部分であった。M-1-1, M-1-2 及び M-3-1 では
全窒素含量が10 g kg⁻¹以上であり、鉄塩土壌内の有機物土壌層である可能性がある。一方、これら土壌の CEC pH4/CCE pH7 は 0.92-0.96 の範囲にあり、比較的小さな変動軽度を示した。しかし本実験では窒素含量の測定をしていないため、M-1-1、M-1-2 及び M-3-1 が鉄塩土壌であるかどうかを判断できなかった。

DP 及び SP 土壌では CEC pH4/CCE pH7 が 0.9 と 0.9 の範囲にあるものが大部分であった（Table 3）。DP 及び SP 土壌の pH は平均 3.7 であることより、現地測定の CEC はさらに低下する可能性がある。土壌中窒素含量の検討では、土壌改良土壌の影響を考慮し、流動や熟活による窒素を考慮に入れる必要があると考えられる。

本実験では CEC の測定においてアルコールを用いて過剰塩の除去を行った。しかし、有機質土壌ではアルコール漂洗により CEC を過小評価する場合がある（原田 1984）。今後、非アルコール漂洗による CEC を併せて検討する必要がある。

(4) 土壌鉄塩質化度

サゴヤの窒素欠乏の改善のためには、窒素施肥は有効な方法と考えられる。しかし、サゴヤの窒素施肥法を確立のためには土壌から供給される窒素無機化量を把握する必要がある。現在サゴヤの施肥法がインドネシア・リュウ国土及びメキシコ・サラワク州など行われている（山本 1998）。そこで両地域の酸塩土壌及び鉄塩土壌について洗水培養による窒素無機化量を検討した。

使用した土壌の化学性は Table 2 に示した。鉄塩土壌でない鉄塩土壌ではデツィンテイジンギ土壌 (TT 土壌) よりも酸塩土壌 (MK 土壌) で高い pH を示した。一方、デツィンテイジンギ土壌及び鉄塩土壌とも全窒素量は 3.5 g kg⁻¹ であったが、鉄塩土壌ではデツィンテイジンギ土壌及び鉄塩土壌は同じ 土壌 pH を示した。一方、デツィンテイジンギ土壌は酸塩土壌よりも高い全窒素量を示した。

還元培養を行った結果はシナジン反応モデルにあてはめることができた（Fig. 1）。Fig. 1 に示すように還元培養により基盤窒素無機化量を 25℃ 変換日に示す。基盤窒素無機化量の測定に試験したすべての土壌で、25℃の無機化曲線上に重ね合わせることができた。酸塩土壌では、25℃ 変換 100 日で約 4.5 mg kg⁻¹、鉄塩土壌では約 1.6 mg kg⁻¹ の窒素無機化量を示した。一方、デツィンテイジンギ土壌は25℃ 変換 100 日で約 3.8 mg kg⁻¹、鉄塩土壌では約 1.2 mg kg⁻¹ の窒素無機化量を示した。両地域ともに、鉄塩土壌は鉄塩土壌の 3.5 倍の窒素無機化量を示した。鉄塩土壌を比較すると、酸塩土壌よりもデツィンテイジンギ土壌において基盤初期間から基盤まで高い窒素無機化量を示した。鉄塩土壌を比較すると、デツィンテイジンギ土壌よりも酸塩土壌において高い窒素無機化量を示した。

Table 4 は窒素無機化量をモデル化式であてはめて得られたパラメータについての示している。両地域の基盤窒素量 (N₅) は鉄塩土壌で 3.5 mg kg⁻¹ 前後、鉄塩土壌では 0.9 mg kg⁻¹ 前後であった。N₅ は鉄塩土壌よりも鉄塩土壌で高く、またデツィンテイジンギ土壌と鉄塩土壌間の差は認められなかった。鉄塩土壌の無機化速度定数 (k₅) が地域間で差は認められなかったが、鉄塩土壌の k₅ はデツィンテイジンギ土壌がマウ土壌の約 2 倍を示した。また、鉄塩土壌の h は鉄塩土壌に比べて高い傾向にあった。活性化エネルギー (E₅) は_IA に鉄塩土壌の 41400 であり、他の土壌では約 16000-17400 であった。

杉原（1986）は日本付近土壌の窒素無機化について速度論的解析を行い、A は 0.0257-0.0697、平均 0.0581 (25℃ day⁻¹)、E₅ は 15000-23000 であることを報告している。本実験の E₅ は杉原の報告のものとほぼ同じであった。一方、本実験で用いた泥炭土壌及び酸塩土壌の h は 0.023-0.067 であることになり、杉原の h に比べて約 10 倍の値を示している。一般には、土地 pH が低い場合には、土壌有機物の分解速度が遅いものと考えられる (Benoit and...
Table 4 Parameters for nitrogen mineralization in laboratory incubation of soils

<table>
<thead>
<tr>
<th>Location and soil type</th>
<th>N-mineralization potential mg kg⁻¹</th>
<th>Mineralization rate constant day⁻¹</th>
<th>Apparent activation energy cal mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tebingtinggi</td>
<td>3.43</td>
<td>0.067</td>
<td>17400</td>
</tr>
<tr>
<td></td>
<td>Peat soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral soil</td>
<td>0.84</td>
<td>16000</td>
</tr>
<tr>
<td>Mukah</td>
<td>3.78</td>
<td>0.034</td>
<td>16300</td>
</tr>
<tr>
<td></td>
<td>Peat soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral soil</td>
<td>0.99</td>
<td>24100</td>
</tr>
</tbody>
</table>

Fig. 1 Time course of N-mineralization in incubated soils.

Starkey 1968, Aoyama and Kuroyanagi 1996)。ムカ土壌及びテビンティングイ土壌の pH は 4.0-5.3 であった (Table 2)。このため，窒素無機化進の測定に供試したすべての土壌 pH は，土壌窒素無機化反応に対して負の要因と考えられる。ムカ及びテビンティングイ土壌で高い k を示す原因は不明であり今後の検討課題である。

(5) サゴヤシの生育に及ぼす土壌の窒素環境
サゴヤシの生育は鉱質土壌よりも泥炭土壌で遅れることが報告されている (佐藤ら 1979, Yamaguchi et al. 1997)。本試験における泥炭土壌の窒素無機化進及び無機化速度は鉱質土壌のものに比べ高水準にあった。これらの結果は，サゴヤシの生育が泥炭土壌で遅れる理由が土壌の窒素環境とは無関係であることを示すようにみえる。

一方，泥炭土壌は鉱質土壌に比べ容積重が極めて小さい。ムカとテビンティングイ両地域における泥炭土壌の容積重は 0.15-0.20 g cm⁻³，鉱質土壌の容積重は 0.90-1.10 g cm⁻³であった。圃場条件下の泥炭土壌と鉱質土壌がサゴ
ヤシへ供給できる窒素無機化量を比較する場合には、土壌容積をもとに計算した窒素量で検討する必要がある。カリ化土壌の容積基準を0.20 g cm⁻²として窒素無機化量を計算すると、鉄質土壌及び泥炭土壌の25°C 変換100日窒素無機化量は1.2-1.4、0.9-1.2 mgとなる。圃場条件下では鉄質土壌よりも泥炭土壌で窒素栄養条件のほうが改善されることが観察される。

泥炭土壌及び鉄質土壌の栄養基の違いは CEC に対しても影響すると思われる。泥炭土壌の CEC はいずれの地域においても約100 cmol kg⁻¹を示していたが、容積基準をもとに計算するとその値の20%に減少する。さらに泥炭土壌の硫黄土壌が著しく強まるものが多いと予想されることが期待される。泥炭土壌の栄養基の強度においても泥炭土壌は鉄質土壌よりも低くなると予想される。

サゴヤシの生育は泥炭層が薄いほど遅く、泥炭層が薄くかつ下層が鉄質土壌であると良いとする報告がある（佐藤ら 1979）。本試験の結果によれば、泥炭土壌のサゴヤシの生育が鉄質土壌のサゴヤシに比べて遅れる原因は、泥炭土壌より供給される土壌窒素無機化量が少ないためである。さらに、泥炭土壌に生育するサゴヤシに対する施肥硝酸の影響が認められない（Kuehl 1995）理由は、泥炭土壌の窒素吸着力が弱く施肥窒素ロスが生じるためと推測される。

謝辞
本研究は、トヨタ財団の助成(助成番号 96B3-106)、研究代表者:高知大学農学部 山本由徳)によるものである。ここに記して謝意を表する。

引用文献
安藤 豊、庄子貞雄 1986 水田土壌中の地層窒素の発現と施用窒素の土壌中での固定について。土肥誌 57: 1-7。
Benoy, R. E. and Starkey, R. L. 1968 Inhibition of de-compensation of cellulose and some other carbohydrates by tannin. Soil Sci. 105: 291-296。
原田清生 1984 土壌の陽イオン・陰イオン交換容量、濃度法とその背景。土肥誌 55: 273-283。
久津野浩三、野本亜雄 1960 土壌吸着基の特性について (第2報) NH₄⁺ 吸収基および Ca⁺⁺、NH₄⁺の選択吸収について。土肥誌 32: 243-246。
奥田 東・山口益郎 1965 Formol 法によるアンモニア性窒素の定量法、新製農芸化学実験書、第1巻、京都大学農学部農芸化学教室編。pp273-300。産業図書、東京。
佐藤 孝・山口 慶・高村泰樹 1979 サゴヤシの栽培と収穫・調整。熱帯農業 23: 130-136。
下田博之・バーバー A. P. 1990 パブアニューギアナ、東セピック州のサゴヤシ林実態とその開発生産性に関する調査研究第1報調査概要とサゴヤシの自然環境。熱帯農業 34: 292-233。
杉原 進・今野隆光・石井和夫 1986 土壌中における有機態窒素無機化の反応速度論的解析法。農業報酬 1: 127-166。
高谷好一 1983 南スラウェシのサゴ生産。南東アジア研究 21: 235-260。
水田武雄・村松恒久夫 1962 置換基の種類による置換アンモニアの放出とその利用の難易(第2報)種別間の接触置換と幼植物による吸収。土肥誌 33: 300-302。
山本由徳 1996 サゴヤシとはどんな植物か。遺伝 50: 48-53。
山本由徳 1998 サゴヤシ。国際農林業協力協会(東京) 109。